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Abstract

Networked multiplayer video games have become enormously popular over the
past two decades. Recently the capabilities of traditionally-designed game servers
have begun to be outstripped by the demands of vast numbers of players, motivating
re-thinking of the fundamental server design.

This project proposes a novel architecture for highly scalable networked multi-
player games, and examines the potential for its practical application. The proposed
architecture differs from traditional models in its distributed nature, being designed
to harness the collective processing power of all connected clients rather than cre-
ating a performance bottleneck by consigning all game state calculations to one
central server.

A game server is implemented using this architecture, and its performance mea-
sured. The results indicate that the proposed distributed architecture can yield
orders of magnitude performance improvements over a centralised architecture,
with only minor additional networking overhead required. Such an architecture
could therefore be utilised to improve the scalability of real-world games which use
old-fashioned centralised designs.
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1 Introduction

From its humble beginnings in the 1960s, the video game industry has grown explosively.

In 2010, the industry’s global revenue was over USD 60 billion[1], eclipsing both the

USD 16 billion music industry[2] and the USD 10 billion film industry[3]. Video games are

played by over two-thirds of people in Australia and America, by all ages and genders[4, 5].

During the 1990s, increasingly widespread Internet access sparked commercial devel-

opment of networked multiplayer video games. As Internet technology has improved,

faster speeds have allowed an ever greater number of players to interact simultaneously

with one another online, and massively multiplayer online games (MMOGs) have conse-

quently experienced greatly increasing popularity. Throughout the 1990s and 2000s, the

number of active MMOG players increased exponentially, with estimates for the world-

wide 2011 figure at over eleven million[6].

As increasingly many people have taken up MMOGs, game designers have begun to

face technical challenges. While it is possible for a single game server to handle a relatively

small player base, this becomes rapidly less viable as the player count increases. For larger

numbers of players, a single game server simply cannot keep up with the processing and

networking demands of all of its connected players, leading to significantly less enjoyable

gameplay for all involved. This is a bad thing.

To address this problem, some game designers have embraced design architectures dif-

ferent from the traditional server-client model[7]. In this project a model is implemented

where one game server distributes work amongst all of its connected clients, harness-

ing their collective processing power to reduce server load and increase scalability, while

retaining certain desirable features of the traditional architecture. A simple proof-of-

concept game is implemented using this model, and tested to gauge its potential.

This work sits alongside that of those who have presented other novel, highly scalable

designs for networked multiplayer game servers[7, 8, 9]. Our hope is that our architecture

may be used to improve the performance of real-world games.

The rest of this report is structured as follows. Section 2 gives a formal definition of a

game and describes several of the network architectures commonly used in contemporary

game design. Section 3 lists the specific goals of our project, along with some of the

industry standards against which our game will be compared. Section 4 details the

design of each component of the game, explaining the important algorithms used as well

as describing the overarching code structure. Section 5 focuses on implementation details,

and lists the external libraries used. Section 6 presents the results of load-testing the game

server, and discusses their implications, the merits of our chosen architecture compared

to others, and the relative performance of our game compared to commercial products.

3



Section 7 concludes by summarising the results of the project and stating the relevance

of our work to current research.

2 Background

2.1 Games

For our purposes, a ‘game’ consists of a state (a collection of variables) and a set of rules

(functions) which, when applied to a state, yield a new state. Users of the game are able

to modify the state by applying rules or requesting that rules be applied.

For example, a very simple single-player game might have its state given by a single

integer x describing the position of a character, and one rule that x may be incremented

or decremented, according to the user’s choice.

In a single-player game, the state is simply maintained by the user and updated

according to the rules whenever necessary. In a multiplayer game, however, each user’s

state must agree with that of all other users to avoid inconsistencies when users attempt

to interact.

For example, consider a simple game in which each user controls the position of a

character, and no two characters are allowed to occupy the same position. Suppose there

are two users, A and B, controlling players A and B. Suppose further that the position

of A according to both A and B is PA, while the position of B is PB according to A,

but P ′B 6= PB according to B. If A were to attempt to move A to position P ′B, this

would be allowed by A, but not by B: the inconsistent game states give rise to undefined

behaviour. Figure 1 shows a diagram of this situation.

A

B

(a) State according to A permits movement.

A

B

(b) State according to B forbids it.

Figure 1: How differences in state according to two users can cause inconsistencies.
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The most straightforward way to retain consistency of the game states in a multiplayer

game is by running a server which maintains the official game state, synchronising every

client’s individual game state with the server’s own. This is a centralised design. More

recently, in an effort to achieve greater scalability while reducing running costs, some

game developers have instead used designs with no central server[9, 10], sharing the

processing and network load between all the clients instead. This is a distributed design.

2.2 Centralised design

Traditionally, a multiplayer game has consisted of a central server connected to ev-

ery client. Until the mid-2000s, almost every commercial multiplayer game used this

architecture[11]. The server stores and updates the game state, sends information about

the state to each of the clients, and handles requests from the clients to update the state.

Each user controls a client, which provides an interface between the user and the server

by drawing the game state to the screen and processing user input, sending appropriate

requests to the server to apply game rules. This design approach is shown schematically

in Figure 2.

C

C C

C

C

C

S

Figure 2: The server S maintains the game state, sending it to each client C.

This design has two strong points. First, if there is only one official game state, then it

is easy to avoid inconsistencies between clients’ individual states. The second advantage

of this method is its security. Clients can only manipulate the game state by sending

requests to the server, and these requests can be validated by the server, to ensure that

users are not trying to cheat, or to ignore them if they are.

One problem with this centralised design is that all game state processing must be done

on the server, creating a performance bottleneck. Consider the simple game described

previously, which allows each user to move a character around a map such that no two

characters can occupy the same position. If there are n users, then each frame the

server must ensure that none of the n characters collides with any other. This can be
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determined in O(log n) time with a binary search, and must be done for every character,

so collision detection alone requires O(n log n) time every frame. If the server is to run at,

for example, 100 frames per second (FPS), even a powerful computer would only be able

handle on the order of 100 000 users of this trivial game1. In practice, a real game requires

orders of magnitude more processing to be performed than the simple game described

here, so this optimistic estimate of 100 000 would shrink correspondingly, becoming a

serious limitation.

Network bandwidth requirements pose a similar restriction on the centralised server

design. Each user would need to be sent the positions of other characters around five

times per second to ensure smooth gameplay. Each character only needs to be sent the

positions of nearby (visible) characters; assume there are m of these on average. The

position of a character would fit into approximately ten bytes, so each user would need

to be sent 5×m× 10 = 50m bytes per second. For all characters, then, the server would

need to send about 50mn bytes per second. Assuming at most about 1% of the characters

in the game are visible to any individual character at any time gives m = 0.01n, so the

server must send 0.5n2 bytes per second. Even with a gigabit network connection, n could

be at most around 15 000. Thus even a powerful server with a fast Internet connection

could only handle on the order of 10 000 simultaneously connected users of this extremely

simple game.

It is clear that while a centralised design is simple and secure, it is both difficult and

expensive to create a scalable server using it. For modern MMOGs, which are expected to

cope with thousands of simultaneously connected users, this poses a significant problem.

2.3 Distributed design

The general idea behind distributed design is to spread processing across several machines,

rather than relying on a single server. This reduces the workload on each individual

computer, and can dramatically improve the scalability of the system.

2.3.1 Peer-to-peer

In a peer-to-peer (P2P) system there is no dedicated server, and instead each peer main-

tains its own version of the game state. This design is pictured in Figure 3. Each user

controls a peer, which responds to user input by updating its own game state and noti-

fying other peers of this change. The main advantage of this is that each peer need only

1Assuming n log2 n comparisons are performed and each of these takes roughly ten clock cycles (an
average value, accounting for memory access time), running at 100 FPS would require 1000n log2 n cycles
per second. For n = 100 000 this equates to around 1.7 GHz. Thus this figure is a reasonable order of
magnitude estimate for the maximum number of users.
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perform processing and send messages associated with its own user’s character.

This makes the load on any individual peer much less than that on a centralised

server. For example, the collision detection described in Section 2.2 becomes an O(log n)

operation for each peer, and each peer would only need to send around fifty bytes per

second (ten bytes to store the character’s position, sent five times per second) to each

nearby peer in order to inform these peers of the character’s position. Thus roughly the

same amount of processing power and bandwidth are required for P2P and client-server

systems, but a well-implemented P2P system spreads these loads uniformly across all

peers, while a centralised system places great load on the server, and very little on the

clients. It follows that as the number of users increases, and the load on the system

consequently rises, the processing power and bandwidth available increase. For this

reason, a P2P design is inherently more scalable than the client-server model.

P

P

P

P

P

P

Figure 3: Each peer P maintains its own game state and synchronises with the others.

Another important practical advantage of the P2P design is the relatively inexpen-

sive maintenance of the system. A client-server system requires a powerful server to be

maintained, along with a fast Internet connection, while a game utilising the P2P design

requires no such infrastructure. Moreover, a server in the client-server architecture must

be equipped to handle peak load, but for most of the time will not be under such stress:

the centralised design makes inefficient use of its expensive resources.

Because not all traffic must go via a central server, a P2P design typically gives better

network latencies for clients. For information to propagate between any two clients A and

B in a centralised architecture, the information must travel the extra distance between A

and the server, and then the server and B; with a P2P network, however, the information

travels as directly as possible from A to B. Thus the average latency between clients can

be reduced.

One significant drawback of the P2P design is its relative insecurity. Having no

centralised server maintaining an official game state makes it easy for one client to give
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false information about the game state to others. In order to prevent cheating, then,

games using this architecture must include code to try to detect and punish peers on the

network who are not playing by the rules. Naturally, this adds a good deal of complexity

to the game code, and in practice it is hard to imagine that a P2P game can ever be as

well-protected against cheaters as a centralised game.

Another potential drawback of the P2P design is the possibility of reduced network

stability. The server in a centralised system is expected to run reliably and with good

performance, but when no such server exists each peer is at the mercy of the others. If

one peer has a low-quality network connection then it can impact directly on all other

peers, whereas under the centralised architecture, clients do not interact directly with

one another, so this is not a problem.

The P2P design has been used in a number of real-world games. MiMaze was

an early proof-of-concept, the first 3D multiplayer game to be designed with a dis-

tributed architecture[12]. Age of Empires and its sequel are two commercially successful

examples[10]. The low latencies and costs of this architecture make it particularly ap-

pealing for popular first-person shooter games, where network lag is very important and

providing servers for a large number of players can be very expensive; as a result of this,

some recent first-person shooter games have abandoned the traditional centralised model

entirely, and are fully P2P. Call of Duty: Modern Warfare 2 is one such title[13].

2.3.2 Mirrored-server

The mirrored-server architecture lies in some ways between the P2P and centralised

designs. Rather than having one central server, this approach employs several, all com-

municating with one another to keep their individual game states synchronised. Each

client connects to whichever server offers the lowest latency, and because of this, the

average network response time can be improved for all clients. Figure 4 represents the

mirrored-server design.

This approach is of particular use when the game server becomes limited by its net-

work connection, rather than by processing power. In this situation, additional mir-

rored servers can be created, increasing the overall client capacity. This may come at

the cost of increased latency between clients on different servers, if server-server game

state synchronisation is performed less frequently than server-client synchronisation. Sev-

eral commercial MMOGs have had success following this design pattern, such as Sony’s

PlanetSide and Lidden Lab’s Second Life[11], and the first-person shooter Quake was

also successfully adapted to use this network topology[8].
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S

C

Figure 4: Seven clients C distributed between three mirrored servers S.

2.3.3 Server-to-peers

The server-to-peers architecture is another compromise between a centralised design and

the fully distributed P2P architecture. A central server still exists, but every client is

capable of running the game simulation as well. The server can take advantage of this

fact by requesting that clients apply game rules, calculating changes to the game state

and sending the results back to the server. Figure 5 shows this network design.

S

P

P

P

P

P

P

Figure 5: The server S and all peers P are capable of running the simulation, but the
official game state is maintained by the central server.

With a prudent choice of which tasks to assign to connected clients, this can signif-

icantly reduce processing requirements on the server. Clearly the greatest advantage is

gained from such a system when the tasks given to clients are computationally intensive

but require minimal information to be transmitted over the network. One such task is

pathfinding: the server need only send origin and destination coordinates to a client,

and the client can calculate the best path between the points, then send back a list of
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coordinates specifying the path for the server.

This approach does allow for the possibility of clients returning deliberately false

information to the server. For example, if in controlling a non-player character (NPC)

the server requested paths from clients, one client could try to return paths leading the

NPC toward a particular destination, to gain some advantage. The server can easily

determine whether a returned path is valid, but not necessarily optimal, so this problem

of clients giving false information is thus not entirely avoidable in general. However, the

potential harm caused can be minimised by randomising which clients are asked for which

information, so that even if one client gives bad data, the mistake will be corrected within

a short time when another client is queried.

2.4 Measuring performance

The canonical measure of the performance of an MMOG is the number of users who

can simultaneously play the game before lag effects reduce the gameplay quality to an

unacceptable level. This number will be referred to as the ‘capacity’ of the game. The

relatively subjective nature of this definition, and the difficulty of finding sufficiently

many people (potentially numbering in the thousands) to agree to play the game at

a particular time, mean that it is almost impossible to determine this number solely

through real-world testing. For server-client, mirrored-server and server-to-peers designs,

the performance bottlenecks are almost guaranteed to occur at the server, because the

minimum CPU and bandwidth requirements of the clients are typically low. This means

that the framerate and network activity of the server can be monitored for relatively low

numbers of users, and the data extrapolated to determine the number of users required

to cause the framerate or network activity to reach unacceptable levels.

3 Requirements

3.1 Objective

The overarching goal of this project was to develop an MMOG which used the server-

to-peers architecture, and demonstrate that this can provide a significant performance

advantage over the same game implemented with a server-client model. More precisely, we

aimed to implement server and client programs satisfying the following three conditions.

• A user should be able to connect to the server via the client program and interact

with the game world, including other users.
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• The server should be able to handle a large number of simultaneously connected

clients while maintaining a specified framerate and without exceeding its band-

width limitations. This number of clients should be comparable to the capacities

of commercial MMOG servers.

• The server and client should subscribe to the server-to-peers architecture. That is,

the client should be capable, at least partially, of updating the game state, and the

server should be able to make use of this to maximise its capacity.

3.2 Industry standards

A simple way to grade our server’s performance is to compare it against that of com-

mercial MMOGs. Although the mechanics of our gameplay are significantly more simple

than those of real-world examples, the underlying concepts should largely be the same:

once the foundations of player movement, collision detection and range searching (the

operation of determining the set of characters within a given area) have been laid, any

further gameplay details can be built from these without introducing additional algorith-

mic complexity to the game loop. Moreover, the (relatively) small performance overhead

incurred from the added complexities commercial games contain could well be offset by

the large amounts of time and money that are invested in their development, and in the

hardware they use. For these reasons, we believe that a rough performance comparison

between commercial game servers and our own can provide meaningful results.

The server capacities of two well-known commercial MMOGs are given below.

3.2.1 EVE Online

One of the most popular MMOGs for which these performance statistics are freely avail-

able to the public is EVE Online. Game logic and processing for EVE Online are per-

formed by around 100 separate physical servers, with each handling different areas of the

game universe[14]. In 2008, one server, powered by a server-grade 3.0 GHz Intel Wood-

crest processor, handled up to 1000 active players simultaneously before the server’s

framerate became unacceptable[14].

The EVE Online server updates its game state once per second[15].

3.2.2 World of Warcraft

Undoubtedly the most popular MMOG at present is Blizzard’s World of Warcraft [6].

While Blizzard refuse to release official performance statistics, unofficial sources suggest

that a World of Warcraft server can handle roughly a few thousand clients[7, 16, 17].
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4 Design

The implementation of this project consisted of three components: a server, a client and a

bot. The server is responsible for maintaining the official game state, and communicates

with clients over the network, receiving instructions from and sending updated game state

information to each client. The client provides a simple visual representation of the game

environment based on data received from the server, and accepts user input, transforms it

to instructions and sends them to the server. The bot is essentially an automated client,

programmed to move randomly around the game world and designed for the purpose of

load-testing the server.

An object-oriented design was used for each of these components. This paradigm

has a strong tradition in game engine architecture, with the majority of past commercial

games having been developed this way[18]; for this reason, it seemed a natural choice for

this project. Each of the three components contains a single hierarchy of objects, with

each object responsible for updating and maintaining its child objects. The components

are all single-threaded (though the server spawns a second process to handle console

input for administrative control). The straightforward nature of this object-oriented,

single-threaded design means that communication between the various parts within each

component can be done simply via the object hierarchy, with no need for inter-thread

communication or a complicated inter-object message-passing system. It is likely that

this approach would be too simplistic for practical application in a more complicated

real-world game, but the added complexities only require additional bookkeeping, rather

than introducing new algorithmic challenges, so were not necessary for consideration in

this project.

The following three subsections describe the designs of the server, client and bot.

4.1 Server

There were several important decisions to be made in what was otherwise a relatively

routine design process for the server. These were associated with how the entire game

world could be distributed amongst several servers, how characters were to be stored in

the server, and which methods should be used for collision detection and pathfinding

These decisions are discussed below.

The virtual environment of the game is split into several distinct ‘worlds’. Players and

NPCs in one world cannot interact with those in another, but they can move between

worlds by performing certain actions (walking to the edge of their current world, for

example). Each server process can handle several worlds, but all worlds need not run on

the same server. This means that some servers can be dedicated to running single worlds
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expected to have relatively high numbers of players, while other servers can run several

less popular worlds. A diagram of this situation is shown in Figure 6.

Server

World World World

Player

Player

Player

Player

Player

Player

Server

World

Player

Player

Player

World

Player

Player

Player

Server

World

Player

Player

Player

Player

Player

Player

Figure 6: An assignment of six worlds of different popularity to three servers, spreading
players evenly across the servers.

Within each world, any entity (player, NPC or object) can only be affected by other

entities within a certain distance of itself. Operations such as collision detection, which

may näıvely be implemented by checking each player against every other player, can thus

be optimised by considering only entities close to one other. Similarly, each player need

only be sent information about nearby, visible entities, significantly reducing the network

bandwidth requirements of the server.

In order to benefit from these facts, the server must be able to find all characters

within a given rectangle efficiently. This is operation is known as ‘range searching’; a

discussion of various data structures and algorithms for range searching can be found

in [19]. For collision detection, the rectangle being range-searched need only be slightly

larger than a single character, while for determining what information should be sent to

each client, the region should be the player’s field of view.

Each character’s position is updated each frame according to the current direction of

travel, and the server is notified by the appropriate client of any changes to this direction.

In order to reduce the load on the server, collision detection simply determines whether or

not a player is able to move in the desired direction, and it is the client’s responsibility to

adjust the player’s direction to avoid any obstacles. For example, if a player is moving in

a diagonal direction and encounters a horizontal wall, the server will completely stop the

player, rather than automatically changing the movement direction to be parallel to the

wall. Making the client perform its own collision detection and corresponding direction

changes in this way reduces the workload on the server.

NPC movement is implemented with a system where each NPC has a target coordi-

nate, its ‘waypoint’, to which it tries to move. Currently NPCs have a hard-coded list of
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waypoints which they attempt to visit in sequence, but it would be simple to implement

a more complicated system where certain in-game events determine an NPC’s waypoint

(for example, if a player moved within a certain distance of a hostile NPC, the NPC’s

waypoint could be set to the player’s position). Actually determining a path from an

NPC’s current position to its waypoint is a non-trivial and potentially time-consuming

operation, because such a path must not pass through any solid objects or characters.

For this reason, the server can query a randomly-selected nearby client for a path between

two specified points. The queried client then calculates such a path and sends it back to

the server. It is then trivial for the server to ensure that the NPC moves along this path

to the target waypoint.

4.1.1 Class list

There were five important classes in the code for the server, pictured in Figure 7. The

main class was Server, which contained objects of type World, each of which contained a

Map and collections of Players and NPCs. Details are given below.

Server is the main server class. It maintains a list of connected clients (along with

the connections to these clients) and Worlds. Every frame the Server object starts

by handling any incoming network activity, such as connections, disconnections

and information packets from clients (these packets are usually passed on to the

player’s World). The Server object then updates each of its Worlds, and finally fills

a collection of outgoing packets with information provided by the Worlds, sending

these to the appropriate clients. Requiring all network activity to pass through

the Server object (as opposed to allowing each World to send information over the

network directly) allows the server to control the relative bandwidth requirements

of the different Worlds easily.

World is the class representing each world controlled by a server. It maintains a list of

Players and NPCs contained in the world, along with information about the map

where the characters move and interact. When the World is updated, first it up-

dates the positions of each character, based on the current direction of movement,

and checks for resultant collisions. It then determines which clients are due to be

sent information about the positions of nearby characters, and constructs the ap-

propriate packets to be sent over the network (these will be sent when the Server

next queries the World for outgoing packets). Finally, the World object updates

each NPC, determines whether any NPCs require new paths to be found, and con-

structs packets requesting any such paths, to be sent to randomly-selected nearby
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Figure 7: Relationship diagram of the important Server classes.

clients. The World is also notified by the Server of any incoming packets from its

players, and handles these appropriately.

Player stores the network identification, name, current World, World position, current

direction of movement, and any packets which are to be sent to the client of a

player. This class is also used by the World for sending packets to players.

NPC represents a non-player character in the game. Each NPC object contains the

NPC’s name, position and direction of movement, as well as information about the

NPC’s route (the list of target waypoints) and path between the current position

and the next waypoint. When an NPC object is updated by a World object, it

calculates the direction to move based on its current position in its path.

Map stores the map for each World, containing information about the dimensions of

the space available and the location of any solid objects through which characters

cannot walk (walls, for example).

4.2 Client

As with the server, much of the client design was fairly standard. The most important

features of note are its ‘state’ system and the techniques used for NPC pathfinding, both

of which are discussed below.

The client’s state system maintains a stack of States, using the top State to determine

the program’s behaviour at any given time. Each State describes a different stage of the

program’s execution; for example, initially the stack contains a single StartState, which

causes the program to display an interface for the user to enter the player’s name and the

IP address of a server to join. When the user has entered these details, a new GameState

15



is pushed on top of the initial State. This creates a connection to the server and displays

the game world, and allows the user to play the game until he or she presses the Escape

key, at which point the GameState is popped from the stack and the StartState becomes

the top element again. This displays the interface for entering the player’s name and the

server address, so the user can either join a different server (causing the GameState to be

pushed back on top of the stack) or quit the program. This system allows extra features

to be added to the client with relative ease: an ‘inventory state’, for example, could be

pushed on to the stack from the GameState if the user wanted to see the items in the

player’s inventory.

For the purpose of NPC pathfinding, the client must be able to find a valid path (one

which does not pass through any solid objects or characters) between any two points.

We chose to model the world as a graph, where vertices represent unoccupied positions

and edges join vertices to represent adjacent positions on the map. We then used a

simple breadth-first search to find the shortest path between the vertices corresponding

to the start and end positions. While this is a fairly slow operation (the time complexity is

O(V +E), where V is the number of vertices in the graph and E is the number edges[19]),

each client should need to perform it quite infrequently.

4.2.1 Class list

The client consisted of seven important classes. The main Client class ultimately con-

tained two State subclasses, each of which determined program behaviour at a particular

time. StartState was used when launching the program and connecting to a server, using

the Input helper class for user interaction. GameState handled drawing the Map and

World, and using the PathFinder, during normal gameplay. More information about

these classes is given in the following list.

Client is the main client class. It initialises the graphics subsystem and maintains the

stack of States, and keeps an Input object to control all keyboard input. Each

frame, the Client object updates the State on top of the stack, and, based on the

return value of the State’s ‘update’ method, either leaves the State on top of the

stack, pops the State off the stack, or pushes the State’s child to the top of the

stack. The Client then updates its Input object to check for any keyboard events,

handling these appropriately.

Input detects key presses and key releases, and notifies the State on top of the stack of

these events.

StartState is the initial State on the stack. It displays an interface allowing the user

to enter a player name and a server IP address. When this information has been
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entered, the StartState object requests (via the return value of its ‘update’ method)

that its child, namely a GameState object, be pushed to the top of the stack.

GameState is the main State in the client program. It provides an interface for the

player to move around and interact with the game world. When a GameState

object is pushed on to the stack it attempts to connect to the server specified by

the user. If no connection can be established, the GameState immediately requests

to be popped from the stack. Otherwise the GameState sends the player’s name to

the server, while waiting for a packet from the server containing information about

the World which the player is about to join. When this information is received,

the GameState initialises a World object appropriately. From this point on the

GameState object communicates with the server to allow the user to control the

player with the keyboard, chat with other users and change into different Worlds.

The GameState object also passes information about other characters (such as their

names and positions) to the World object, and uses a PathFinder object to perform

NPC pathfinding at the server’s request.

World stores information about the game world, namely a list of characters in the world,

a sublist containing those characters which are visible to the user, and a Map

object. World also handles drawing the game to the screen, and can be used, for

pathfinding, to determine whether a particular position in the world is occupied by

either a character or a solid object on the map.

Map loads a map from a local file and stores it in memory. A Map object can draw its

map to the screen, and detect whether a character at a given position is colliding

with any solid objects on the map.

PathFinder is the class used to find paths between any two points in a given World.

The object first performs a breadth-first search to find the shortest path between

the two points not passing through any solid map objects or characters, and then

converts this path (which is initially a sequence of adjacent positions) into a list

of waypoints so that a character can move in a straight horizontal or vertical line

from each waypoint to the next without colliding with another character or object.

An example of a path, with the corresponding waypoints, is shown in Figure 8.

4.3 Bot

The bot is based heavily upon the client, but does not require a stack of States, because

only the GameState is used. The bot uses the same algorithm as the client for NPC

pathfinding. The only other notable feature of the bot is its artificial intelligence (AI).
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Figure 8: An example of a path with waypoints shaded.

The bot uses a simple AI system, choosing a random direction each second and walking

in that direction until the next second. While this is not particularly realistic, it ensures

that the bot induces a fairly similar strain on the server to a human client, by frequently

requesting direction changes and causing collisions.

4.3.1 Class list

The bot reuses the GameState, World, Map and PathFinder classes from the client, and

introduces a new class, Bot. While World, Map and PathFinder have exactly the same

functionality as in the client program, GameState is used differently. These differences,

along with the Bot class, are detailed in the list below.

Bot is the main bot class. It starts by initialising a GameState object with a player name

and server IP address specified by commandline arguments, and then updates this

object until disconnected from the server.

GameState is identical to the class in the client program, but is used in a slightly

different manner. In particular, it is never pushed on to a stack of states (because

no such stack exists in the bot program), its ‘draw’ method is never called (because

the bot does not need to display any graphics), and the methods for handling key

events are called by the Bot object (rather than an Input object) to move the

bot’s character in random directions. However, all other functions of GameState

(communicating with the server, storing character information in a World object,

performing NPC pathfinding with a PathFinder object, and so on) are used by the

bot program, which ensures that the bot and client programs are indistinguishable

from the server’s point of view.
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5 Implementation

The server, client and bot described in the preceding section were all implemented in

C++, making extensive use of the C++ Standard Template Library (STL). Several

other external libraries were also included, and their uses are described in the following

subsections.

5.1 Server

The server and client use the ENet library for networking, which provides a wrapper

around the User Datagram Protocol (UDP) supporting optional reliable packets (that is,

packets which are guaranteed to reach their destination)[20]. We chose not to use the

Transmission Control Protocol (TCP), which automatically ensures reliability of packets

at the expense of speed, because some information sent between the server and client need

not be reliable, rendering the speed sacrifice unnecessary. For example, position updates,

sent from the server to each ten times per second, are so frequent that it does not matter

if a small number of these packets are lost, because the client can simply extrapolate the

positions of nearby characters, guessing their locations based on previous positions and

directions (which will be from at most around 0.5 seconds in the past).

We chose to store players and NPCs in a k-d tree (with k = 2) provided by the

libkdtree++ library[21]. This allows range searches to be performed in O(
√
n+m) time,

where n is the total number of characters in the world and m is the number of characters

in the rectangle being searched, and characters to be inserted into or removed from the

tree in O(log n) time[19, 21].

5.2 Client

The client required some form of graphical interface to aid in debugging and confirm-

ing that the server was correctly performing tasks such as collision detection and NPC

pathfinding, but we did not want to waste time making the client particularly aestheti-

cally pleasing, when the focus of the project was on creating a scalable server. For this

reason, we chose to have the client run in a terminal and use the ncurses library for

graphics[22], which allows simple text-based graphics to be set up and drawn easily. A

screenshot of the client running is shown in Figure 9.

The ncurses library also provides functionality for handling keyboard input, but the

client required slightly more flexibility than that offered by ncurses. In particular, ncurses

cannot be used to detect specific ‘key pressed’ and ‘key released’ events, but instead

detects when a key has been ‘typed’ (pressed and then released). We wanted the user
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Figure 9: A screenshot of the client running, showing a player (‘C’) and NPC (‘N’) in a
small world.

to be able to move the player by holding a particular direction key, so we chose to use

the Xlib library for keyboard input[23]. This library provides the necessary low-level

keyboard support, while not requiring the creation of a separate X window (unlike other

libraries such as the Simple and Fast Multimedia Library (SFML)[24]).

5.3 Bot

The bot reuses most of the client code, but instead of reading input from the keyboard

with Xlib, it generates its own key press and release events to move the player appropri-

ately. This allows it to control a player without any input from the user. The bot also

does not require graphics of any form, so does not use the ncurses library.

6 Testing and results

To determine the performance of our game relative to that of commercial games, and

to investigate the difference in performance between the server-to-peers and server-client

architectures, extensive testing of the game was performed. In this section, the hardware

used to run the server is listed, and these system specifications used to predict where the

20



performance bottlenecks will occur. The results of the testing are then given, and their

interpretations and implications discussed.

6.1 Server specifications

All testing of the game was performed with the server running on compasaur, a mid-range

desktop computer running Debian GNU/Linux 6.0. Unfortunately we did not have access

to server-grade hardware, and while this will have a detrimental effect on the absolute

performance of the game, it should not greatly influence the relative performance of the

server-to-peers and server-client architectures. The CPU used was an AMD Phenom

II X4 945 processor, with four cores (only two of which were used by server processes)

each clocked at 3 GHz. Memory available comprised a total of 64 KiB L1 cache per core,

2 MiB unified L2 cache, 24 MiB unified L3 cache, and 4 GiB DDR3 system RAM, clocked

at 1600 MHz.

Two types of network were used when testing the server. First the server was run over

the Internet, with an upstream connection speed measured at 100 kB s−1 (and 950 kB s−1

downstream). Later the server was run over a local area network (LAN), with symmetric

speed of approximately 11 MB s−1.

6.2 Performance estimates

With this information in mind, some predictions can be made as to where the performance

bottlenecks will occur in the server. Suppose there are n characters in the server, and

n′ of these are clients (so there are n − n′ NPCs). Furthermore, assume that about 1%

of the world’s population is visible to any character at any one time – this corresponds

to 0.01n characters. This estimate should be accurate because the map used for testing

has dimension 200 × 200, while each character can see others within the 20 × 20 square

centred at their position.

The server sends each player the positions of all visible characters ten times per

second. Storing the position of a single character requires six bytes (two bytes to identify

the character, two bytes to store the row coordinate and two bytes to store the column

coordinate), so storing the positions of all nearby characters requires around 6× 0.01n =

0.06n bytes. Each of these packets also contains ENet, UDP and IPv4 headers, the

combined sizes of which are around thirty bytes[25, 26]. Therefore each character will

be sent position updates of approximately 10 × (0.06n + 30) = 0.6n + 300 bytes per

second. Thus the total bandwidth required to send position updates to all players is

around 0.6nn′ + 300n′ bytes per second. Requests for NPC paths to be found are sent

once per 1.5 seconds per NPC, and each of these requires ten bytes plus the thirty bytes
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of headers, so about 40(n−n′)
1.5

≈ 27(n− n′) bytes are sent per second. Some basic algebra

shows that with 400 NPCs, the 100 kB s−1 upload connection will be saturated when there

are around 140 connected clients. If the server is to be run over the LAN with 11 MB s−1

upstream connection speed, this number could be as high as 4000.

The server download requirements do not pose any serious limitation. Only two types

of packet are regularly received from clients: namely, direction changes and NPC paths.

Assuming each path contains on average ten waypoints, it requires about twenty bytes

to store an NPC path, plus thirty bytes of headers. These paths should be received

about once per 1.5 s per NPC, which corresponds to a download rate of about 50×(n−n′)
1.5

≈
33(n−n′) bytes per second. Direction changes are received approximately once per second

per client, and each of these packets requires only one byte plus thirty bytes of headers,

yielding a download rate of around 31n′ bytes per second. Therefore the total download

rate of the server should be approximately 33n− 2n′ bytes per second. With 400 NPCs,

the download speed of 950 kB s−1 should not become a limiting factor until about 30 000

clients have joined. With the 11 MB s−1 LAN connection this number will be even higher

– close to 350 000.

To estimate the number of characters that can join before processor speed starts to

limit performance, the amount of time required to perform the slowest operation in the

game loop, namely collision detection, must be determined. Collision detection requires

a range search to be performed in a small (4 × 4) rectangle around each character. It

is shown in Appendix B that, when n is less than around 100 000, each of these range

searches requires around 0.07
√
n× 10−6 seconds on the server machine used. The range

search must be performed for each of the n characters 100 times per second, that is, every

0.01 seconds, so the server will be at its maximum capacity when 0.01 = 0.07
√
nn×10−6,

or n =
(

104

0.07

)2/3
≈ 2700. Thus the server framerate should drop below 100 FPS when

there are around 2700 characters in the server. With 400 NPCs, this corresponds to

2300 connected clients. Note that this is probably an overestimate of the number of

clients required to overload the processor, because only the slowest operation of the game

loop, collision detection, was taken into account, even though other operations such as

maintaining the k-d tree are almost as slow.

If the server is forced to perform NPC pathfinding itself (without allocating this work

to connected clients), this becomes the most CPU-intensive operation of the game loop

even though it occurs relatively infrequently (once per NPC per 1.5 s). The breadth-first

search used for finding a path of length l requires collision detection to be performed

at up to l2 different positions on the map, so this operation takes l2 × 0.07
√
n × 10−6

seconds. Hence, if l is around 100 on average, finding a single path requires approximately

0.07
√
n×10−2 seconds. With 400 NPCs, this operation must be performed approximately
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400
1.5
≈ 270 times per second, or once every 3.7 × 10−3 seconds. The server will thus be

at its maximum capacity when 0.07
√
n × 10−2 = 3.7 × 10−3, or n =

(
3.7×10−3

0.07×10−2

)2
≈ 28.

But with 400 NPCs, n must be at least 400, so this result suggests that the server will

not even be able to cope with all of the NPCs, let alone any connected clients. However,

this derivation assumed that paths had to be found for all NPCs, but in fact the server

only calculates paths if there is a client nearby (to ensure a fair comparison with the

server-to-peers implementation, which only requests paths for NPCs which are close to a

connected client). Hence, despite this estimate, the server would still be able to handle

a small number of clients, because there would be very few paths to find. It is clear,

however, that the capacity of the server-client implementation should be far less than

that of the server-to-peers.

Our server is likely to encounter memory bottlenecks long after already becoming

restricted by processing and networking limitations. By far the most significant memory

requirement is the allocation of 20 kB per player (used to store data packets queued to be

sent to clients), which will not fill the 4 GiB available until 200 000 clients are connected.

The order in which bottlenecks will be encountered during testing depends on the

manner of the testing. If the server is run over a home Internet connection, the upload

speed will become the first limiting factor, after around 140 clients have joined. On

the other hand, if the server is run over a LAN or other high-bandwidth network con-

nection, the processor speed is predicted to be the first bottleneck encountered, when

approximately 2300 clients have connected.

6.3 Testing

During each test, at least one human client joined the server to ensure that collision

detection, NPC pathfinding and bot AI were all working correctly, and that there was no

perceivable network or server lag. The first three of these could be determined objectively

just from studying the movement of NPCs and bots. Detecting lag was a more subjective

process, and meant determining that all entities in the game world appeared to be moving

smoothly and at constant speed. If the network became saturated, packets would be lost

(since UDP was used), and the client would receive position updates only sporadically,

giving the appearance of characters ‘warping’ from one location to another, no longer

moving at constant speed. If the server’s CPU became overloaded, the game framerate

would drop to an unacceptably low level, causing client updates to be sent infrequently,

making characters move in a visibly jerky fashion.

The first test was to connect as many bots as possible over the Internet, while record-

ing the FPS and bandwidth use of the server. For this test the server had 400 NPCs,
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because we thought this would be a reasonable estimate of the number of NPCs in a real

MMOG. Bots were connected to the server ten at a time until either they started being

disconnected, or could no longer connect at all, which indicated that the server was unable

to maintain these extra players. A graph of upload and download speed against number

of characters is shown in Figure 10, while a graph of FPS against number of characters

is shown in Figure 11. The error bars in these figures, and all others contained herein,

show the standard error in the values (for each particular character count, the server was

left running long enough to collect at least ten data points; a script was written to group

together all data points with the same character count, then average them and calculate

the standard error).
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Figure 10: Graph of upload and download speed against number of characters for bots
connected over the Internet with 400 NPCs.

Figure 10 shows that the 100 kB s−1 upload speed limit is reached when there around

480 characters, or 80 players. Note that this is lower than the estimate of 140 players

made in Section 6.2, but this can be attributed to the frequent packets sent automatically

between the server and each client by ENet to transfer basic information, such as latencies,

and to ensure that the connection is still active. Figure 11 shows that the framerate of the

server dropped as more players joined the server, until around sixty players had joined.

The rise in framerate occurring beyond this point can be explained by considering the

behaviour of the game as the upload connection became saturated. When this occurred,

packets sent to clients requesting paths for NPCs would often be lost, so these NPCs
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Figure 11: Graph of FPS against number of characters for bots connected over the
Internet with 400 NPCs.

would not move at all (because they had no paths). This lack of movement meant that

less collision detection and maintenance of the k-d tree had to be performed, so the load

on the server decreased. These graphs demonstrate that the bottleneck for this test was

the upload connection, as expected from the estimates in Section 6.2. Unfortunately the

relatively small number of data points in the graphs, and the large fluctuations even in

nearby values, make it is difficult to extrapolate these trends in order to determine when

the framerate of the server would drop below 100 FPS. However, Figure 10 suggests that

the download requirements of the server will always be significantly less than the upload

demands, implying our game server will never be limited by the download speed of the

connection.

Further testing was performed by connecting bots over a LAN with much faster upload

and download connections. This test was more realistic than the first, because a real game

server would almost certainly have a significantly faster Internet connection than a home

computer. As before, 400 NPCs were used, and bots were connected to the server ten at a

time. For this test we were unable to saturate either the upload or download connections,

or cause the framerate of the server to drop below 100 FPS, so results were only taken

until 600 bots had joined (bringing the character count to 1000). These results are shown

in Figures 12 and 13. Notice that Figure 12 is consistent with the result from the first

test, in that the amount of data transmitted is much more than that received.
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Figure 12: Graph of upload and download speed against number of characters for bots
connected over a LAN with 400 NPCs.
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Figure 13: Graph of FPS against number of characters for bots connected over a LAN
with 400 NPCs.
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Quadratic and linear trendlines were fitted to the respective plots of transmitted data

against number of characters and FPS against number of characters in Figures 12 and 13,

as shown in Figures 14 and 15. A quadratic trendline was fitted to the plot of transmitted

data against number of characters because the analysis is Section 6.2 suggests that this

relationship should be parabolic. While a linear relationship was not predicted between

FPS and number of characters, it is apparent from Figure 13 that the trend is fairly linear

when the number of characters is greater than around 420. The data prior to this point

were therefore ignored when fitting the trendline.
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Figure 14: Quadratic trendline for plot of upload speed against number of characters for
bots connected over a LAN with 400 NPCs.

Figure 14 suggests that the 11 MB s−1 upload connection will not limit the capacity

of the server until there are around 4300 characters, or 3900 connected clients. This

is consistent with the estimate of 4000 clients calculated in Section 6.2, although it is

difficult to be sure of the accuracy of this extrapolation without more data. Figure 15

suggests that the server framerate will drop below 100 FPS when there are about 1200

characters in the server, or 800 connected clients. This implies that, with the type of

Internet connection one would expect of a real dedicated game server, the capacity of

our server will be limited by the processor speed (if a framerate of 100 FPS is to be

maintained), as predicted in Section 6.2. While the capacity of the server was lower than

the predicted value of 2300, this is almost certainly due to the fact that only the slowest

operation of the game loop, collision detection, was taken into account when estimating
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Figure 15: Linear trendline for plot of FPS against number of characters for bots con-
nected over a LAN with 400 NPCs.

the bound placed on the capacity by the processor speed, even though other operations

(such as maintaining the k-d tree) are almost as time-consuming.

Recall from Section 3 that the popular commercial games EVE Online and World of

Warcraft could both handle on the order of thousands of players. Our server’s capacity

is marginally lower than this, but is still of a comparable order. Considering the fact that

our server’s target framerate was 100 FPS, which is almost certainly much higher than

that of a typical MMOG[15], the performance achieved is very good.

The final step in the testing was to compare the relative performance of the server-to-

peers and server-client architectures for our game. The server was modified to perform

NPC pathfinding itself, thus converting the system from server-to-peers to server-client.

Note that the server used the same breadth-first search as the client for this pathfinding,

ensuring a fair comparison between the two architectures. With 400 NPCs, not even

twenty clients could join before the server framerate dropped to under one frame per

second. This is pictured in Figure 16. The framerate fluctuated a lot initially, since it

was heavily dependent on how many NPCs requested paths, which depended on how

many were visible to the connected bots, which, since the number of bots was so small,

was essentially random. From the time that the fourth bot joined the server, the frequency

of NPC path requests remained high enough to keep the server framerate below 10 FPS.

By the addition of the thirteenth bot, the average server framerate stayed below 1 FPS.
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Figure 16: Framerate of a centralised server with 400 NPCs.
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Figure 17: Data transfer rate comparison between distributed and centralised designs.
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While it is clear that the use of the server-to-peers architecture provides significant

processing performance benefits over server-client in terms of framerate, there are too

few data points to determine the relative network performance of the two designs. The

number of NPCs was lowered to 50 to ensure that several hundred bots would be able

to join both the server-to-peers and server-client versions of the game server. Figure 17

compares the amounts of data transmitted and received for each of these servers. It

is clear that the difference is negligible: over the range plotted, the difference in data

transmission rate is no more than about 5%, and the rates of received data are almost

indistinguishable.

The server-to-peers design provides great overall benefit, then. While the additional

network overhead is minimal, the server load is greatly reduced. This architecture there-

fore vastly increases server capacity, at a negligible networking cost.

7 Conclusions

In this project we have successfully designed and implemented a simple massively mul-

tiplayer online game using a server-to-peers architecture. The performance of the game

server was poor when clients connected to the server over the Internet, with only around

80 players being able to connect. However, for a dedicated game server one would expect

a significantly faster Internet connection than that used for testing in this project. When

clients connected to the server over a LAN, with a much faster upload connection, the

server was predicted to be capable of handling around 800 players before the framer-

ate dropped to below 100 FPS, which compares very well to the performance of popular

commercial games such as EVE Online and World of Warcraft.

We have also demonstrated that the server-to-peers architecture can give significant

performance gains over a server-client design, dramatically reducing the processing re-

quirements of the server and causing only a minimal increase in network traffic. While

this performance gain depends heavily on the tasks chosen to distribute to peers, we

believe that server-to-peers techniques could be applied beneficially to a wide range of

MMOGs which would traditionally be based on the server-client architecture. However,

the applications of the server-to-peers design are not restricted to server-client games:

this design also has connections with two active areas of contemporary research, the

previously-mentioned mirrored-server[8] and peer-to-peers designs[7].

The existing partitioning into Worlds (Figure 6) of our design lends itself naturally

to using the mirrored-server architecture. It should therefore be a simple task to unify

these two designs, sharing the advantages of both. The resulting architecture would

possess the great CPU scalability of the server-to-peers design, as well as the strong
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network scalability and lower average latencies of the mirrored-server design (as discussed

in Section 2.3.2).

There are three major ways (discussed in Section 2.3.1) that a peer-to-peer design

is superior to a central server design, and our architecture can be made to share all

of these advantages. First, the main advantage of peer-to-peer over centralised design

is the removal of the central server bottleneck, which our results have shown occurs

in the CPU long before the network. However, our design achieves the goal of greatly

reducing CPU load on the server, making it possible to run a central server while retaining

high scalability, matching this advantage of the peer-to-peer design. The second major

advantage the peer-to-peer design has over the centralised design is decreased latency

between peers. As discussed above, our design can be combined with mirrored-server

design to share this advantage, too. Finally, the peer-to-peer design eliminates the large

central network traffic load, but this turns out to be a largely irrelevant consideration.

Research suggests that the overall network load in a peer-to-peer design is similar to

that of a traditional centralised design[8], which our results indicate is only very slightly

less than that of the server-to-peers layout. Our bottleneck predictions suggest that a

server with a high-quality network connection will not become network-bound until many

thousands2 of users are connected simultaneously, so for practical purposes the removal

of centralised network load is not an important advantage of the peer-to-peer design.

(Even if it were, augmenting our server design with the mirrored-server layout would

allow indefinite network scalability.)

Our server-to-peers architecture matches the strengths of the peer-to-peers design,

while avoiding some of its weaknesses. The retention of a central server and official

game state can greatly reduce the potential for cheating, since it is not possible for a

client to change the game state however he or she sees fit. Furthermore, having a central

server gives the owners of a game complete control over its state, which may be desirable

for some commercial products. Overall, by combining the strengths of server-client and

peer-to-peers architectures, and largely avoiding their weaknesses, our design allows great

scalability and presents a compelling case for its use in modern game architecture.

2Quadratic extrapolation predicts over 16 000 users would saturate a gigabit connection.
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A Code

The source code for the implementation of our project is available at

http://cs.anu.edu.au/people/Eric.McCreath/students/GillSlatyer2011/code.tgz

and is distributed under the terms of the zlib license:

Copyright (c) 2011 Malcolm Gill and Harry Slatyer

This software is provided 'as-is', without any express or implied

warranty. In no event will the authors be held liable for any damages

arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,

including commercial applications, and to alter it and redistribute it

freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not

claim that you wrote the original software. If you use this software

in a product, an acknowledgment in the product documentation would be

appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be

misrepresented as being the original software.

3. This notice may not be removed or altered from any source

distribution.

Full documentation is available at

http://cs.anu.edu.au/people/Eric.McCreath/students/GillSlatyer2011/doc/classes

or can be generated from the code using Doxygen.

B Benchmarking libkdtree++

The time complexity of libkdtree++’s range search for a two-dimensional tree is O(
√
n+

m), where n is the total number of characters and m is the number of characters in

the rectangle being searched[19]. For the purposes of collision detection in our game,

the characters were placed in a 200 × 200 area and the range search required locating

characters within a 4×4 square. Assuming characters are somewhat uniformly distributed

throughout the 200× 200 area, it follows that m ≈ 4×4
200×200n = 0.0004n. Thus when n is

less than around 100 000, m�
√
n, so the complexity of the range search is approximately
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O(
√
n). In order to make accurate predictions of the real-world performance of this range

search, however, more information is required than just the time complexity.

For this reason, a program was written to generate random two-dimensional trees and

perform range searches on them in the same way that a game server might for collision

detection. This program is contained in the ‘kdtree’ directory of the code distribution.

The range searches were timed (with each particular value of n measured multiple times in

an attempt to reduce error), and the data plotted in Figure 18. The results indicate that

the running time is indeed O(
√
n) for the cases tested. Therefore a function f(n) = b

√
n

was fitted to the data, as pictured.
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Figure 18: Dependence of range search running time on character count.

It was found that b ≈ 0.07. That is, running on compasaur, each range search required

0.07
√
n microseconds.
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